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The flux of energy from large to small scales in hydrodynamic turbulence con-
trols the dissipation of energy at a given scale in the fluid. An accurate parame-
trization of this flux is a prerequisite in order to devise reliable methods to
simulate turbulent flows without resolving all the scales of motion. This
problem is discussed in the context of a particle method based on the Smooth
Particles Hydrodynamics algorithm. Motivated by the von Karman–Howarth–
Kolmogorov exact relation for the energy flux, and by Lagrangian dynamics
considerations we postulate an energy transfer term which is quadratic in the
velocity and formally time reversal invariant. The numerical simulation of the
model however is observed to spontaneously break the time reversal symmetry,
demonstrating that the proposed term acts on average as the desired eddy
damping.
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ulations; time reversibility.

Hydrodynamic turbulence in 3 dimensions is characterized by a nonlinear
flux of energy from large to small scales, which gives rise to the celebrated
‘‘energy cascade.’’ (1, 2) The exact Kolmogorov equation:
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ODu(x)3P=−
4
5
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d2

dx2 ODu(x)2P (1)

relates the average rate of energy dissipation, or the energy flux e to the
moments of the longitudinal velocity difference Du(x). Remarkably, in the



limit where the viscosity n goes to zero, or equivalently, when the Reynolds
number becomes infinitely large, the dissipation becomes independent of
viscosity. (2) The existence of a mean energy flux in highly turbulent flows
is thus well understood. Providing a reliable description of the instanta-
neous energy transfer and of its fluctuations remains however a challenging
problem. This difficulty has serious practical consequences. Indeed, with
the present computer technology, it is still effectively impossible to resolve
adequately all the scales of motion for most problems of practical impor-
tance. Because the large scale features of the flow only are of interest,
a truncated description, where the smallest scales of the motion are
parametrized in some adequate fashion, is expected to be sufficient.
However, it has proven rather difficult to truncate reliably the smallest
scales of the motion and to parametrize the energy flux below the resolved
length. So far, the attempts to devise such a numerical scheme, known
as Large Eddy Simulations (LES), (3) have been mostly restricted to the
Eulerian representation of the equations of motion. The lagrangian point
of view is also very appealing in this context. (4)

In this note, we consider the possibility of using particle simulations to
parametrize the energy transfer, and its application to effectively simulate
turbulent flows. Much insight has been recently gained in the problem of
passive scalar mixing by analyzing the motion of individual lagrangian
particles. (5, 6) Similar ideas have been used to understand the fluctuations of
the turbulent velocity field itself. (7–9) In particular, it has been shown that
the local energy flux at scale R can be parametrized by using the knowledge
of the position ri and the velocities vi of a cloud of lagrangian particles.
The constructions (8) involves the mean moment of inertia tensor g, the
mean velocity V, and the mean velocity gradient tensor M, defined by:

gab — (r i − r0)a (r i − r0)b; V — v i; Mab — C
c

g−1
ac (r i − r0)c (v i − V)b (2)

(the overbar represents an average over the particles of the cloud). The
energy flux can be parametrized by: a tr(gM2M†), where a is a weakly
dependent function of scale, of order 1 (1 M a).

Simulating a flow by using particles can be done by considering a gas
of elementary molecules, which reproduce the dynamics of the fluid only at
scales much larger than the mean free path. (10, 11) Here, we rather try to use
directly the fluid dynamics equations, expressed in lagrangian terms. The
Smooth Particle Hydrodynamics (SPH) method (12) provides a convenient
framework to perform such calculations. SPH is based on interpolation
from discrete particles, characterized by their masses m i, positions ri, and
velocities vi, see Fig. 1, and obeying the equations of motion for fluid
particles:
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Fig. 1. Representation of the gas of particles. A set of particles, characterized by their
masses m i, their positions ri, and their velocities vi, evolving according to the equations of
motion Eqs. (3) and (4). The pressure field and the gradients are contructed with the help of a
kernel function W(x, h) of spatial extent h.

dri

dt
=vi (3)

dvi

dt
=−

Npi

ri
+f i+Di (4)

where Npi is the pressure gradient, f i an external forcing term, and Di an
energy flux term discussed below. We consider here a weakly compressible
case, where pressure p is related to density r by p=1

c rc. For consistency,
the velocities are required to remain small compared to the velocity of
sound: |vi | ° `

dp
dr

. Quantities such as the density ri, or the pressure
gradient, are computed by interpolation. To this end, a positive kernel
W(x, h), with a spatial extend of order h in the variable x, and normalized
by > W(x, h) dx=1, is introduced. For isotropy reasons, we restrict our-
selves to the case where W depends only on the norm of x2. A convenient
example is the gaussian kernel: W(x, h)= 1

(`p h)3 exp −(x2/h2). The density
r(r) is defined by:

r(r)=C
j

mjW(r − rj, h) (5)

and, in general, the interpolation of a field A, whose value Aj is known at
each of the lagrangian particle j, is defined by:

A(r)=C
j

mj

rj
AjW((r − rj), h) (6)
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where rj — r(rj). Gradients are computed directly by differentiating Eq. (6)
with respect to r. For explicit calculations, it is convenient to use: (12)

Npi

ri
=C

j
mj

1 pi

r2
i

+
pj

r2
j

2 NiWij (7)

where Wij — W((ri − rj), h) and NiWij — NW((r − rj), h)|r=r i
. In the follow-

ing, we will use the notation rij — (ri − rj) and vij — (vi − vj).
In the absence of forcing and energy transfer (f i=Di=0), the result-

ing system of equations can be derived from a lagrangian. The dynamics
resulting from SPH approximates the usual hydrodynamics. In particular,
it leads to conservation properties for the linear and angular momentum.
In the limit where particles get very close to one another, circulation con-
servation is recovered. (13)

The smoothing length h is the smallest scale unaffected by the
smoothing. The SPH method does not attempt to describe faithfully the
motion at scales smaller than h, since it resorts to an averaging. This
approach is particularly appropriate for the coarse-grained description of
turbulence we are interested in. The key requirement is to provide a con-
sistent energy flux at the smallest resolved scale h.

Various schemes have been proposed to approximate molecular
viscous dissipation. (12, 14) Here, we are rather interested in modelling the
energy transfer occuring at the smallest resolved length, in a situation
where scales smaller than h are not properly taken into account. In order to
represent the nonlinear energy flux term, and inspired by previous work, (8)

we postulate the following form for the energy transfer term Di:

Di= − nt C
j

mj
1 1

ri
+

1
rj

2 dWij

dt
vij (8)

= − nt C
j

mj
1 1

ri
+

1
rj

2W −

ij(vij · rij) vij (9)

To write the second equality, we simply assumed that W(x, h) is a function
of u — x2, and we use the notation W −

ij — “uW(u, h)|u=r2
ij
. The parameter

nt is dimensionless. The energy transfer term is quadratic in the velocity
field v. The change t Q − t, r Q r, and v Q − v leaves D invariant. As
a consequence, in the absence of any other viscous dissipation term, the
equations of motion are time reversal invariant. A spontaneous symmetry
breaking must occur so that D can act as a genuine dissipation.

The evolution equation for the kinetic energy, E=1
2 ;i m iv

2
i , is:

dE
dt

=−nt C
i

C
j

m i mj
1 1

ri
+

1
rj

2W −

ij(vij · rij) v2
ij (10)
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In the case where W is a gaussian, WŒ(x, h)=− 1
h2 W(x, h), the expression

above becomes:

dE
dt

=+
nt

h2 C
i

C
j

m i mjWij
1 1

ri
+

1
rj

2 (vij · rij) v2
ij (11)

Thus, for particles with the same mass (m i=m), the equation for the mean
kinetic energy reads:

1
2

dOv2P

dt
=

nt

h2 O(vij · rij) v2
ijP (12)

where O · · ·P denotes an average over all particles. For more general kernel
functions, with the mild assumption that W is a decreasing functions of x2,
Eq. (12) still provides a convenient estimate of the energy dissipation.
Equation (12) is very reminiscent of the Kolmogorov equation, Eq. (1). For
an incompressible turbulent velocity field, with a 2/3 scaling exponent
(Du(x)2 3 x2/3), one has:

O(vij · rij) v2
ijP=− 20

9 er2
ij (13)

Comparing Eqs. (12) and (13), one deduces that the parameter nt should be
of order 1 for consistency.

The forcing term f i is assumed to act at the largest spatial scale; it
feeds kinetic energy into the system.

To test these ideas, we have integrated numerically the SPH equations,
Eqs. (3) and (4). The algorithm is based on the code kindly provided to us
by Morris. (15) The density, as well as the right hand side of the Eq. (4) are
estimated by a sum over neighbouring particles, Eqs. (5) and (7), which
involves of order N2 operations for N particles. To reduce the correspond-
ing prohibitively large CPU cost, we use kernel functions with a compact
support, typically a quintic spline function, and we partition space in
boxes, making sure that two particles contributing to the sums in Eqs. (5)
and (7) are located either in the same box, or in two adjacent boxes. This
reduces the computational cost to order N. In the present calculation, we
use periodic boundary conditions, with a domain size L. The forcing is a
superposition of Fourier modes at wavenumbers k=± 2p

L êi, where êi are
the unit vectors in the three directions of space. Particles are initialized on
a lattice of mesh 1. With these conventions, the total number of particles
is L3. A typical value of h is h ’ 1.5 (the number of particles in the sums in
Eqs. (5) and (7) of order of 380). The equations of motion are integrated by
a modified predictor corrector algorithm, second order in time. The time
step is determined dynamically to ensure that the scheme is stable. With
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the parameters of the forcing chosen, the velocity remained on average
small compared to the velocity of sound, c (Ov2P1/2 ’ 0.1; whereas c ’ 1).
The maximum value of |v| became on occasions comparable to the sound
velocity.

A number of simulations of the gas of lagrangian particles have been
performed. In the absence of a forcing term (f=0), the initial condition
was chosen to be a superposition of Fourier modes at low wave numbers,
with random coefficients. The energy transfer term O(vij · rij) v2

ijP is a func-
tion of time, which satisfies: O(vij · rij) v2

ijP|t=0=0. The particle average
energy transfer is found to be negative, with occasionally positive values.
We thus observe time reversal symmetry breaking, so the energy transfer
term acts on average as a dissipation.

When the forcing is present (f ] 0), we observe that the energy flux
term is negative, without reaching positive values. Although the energy
transfer dissipates, we found that it cannot by itself control the evolution of
the particle ensemble. At long times, we observed degradation of the solu-
tion which manifests itself in particular as growth of the velocity divergence
O(N · v)2P. We interpret this effect as resulting from a slow growth of cor-
relations between the geometry of the distorted lattice and the velocity
field. (8)

To avoid this problem, we periodically re-interpolated, using the
kernel W (see Eq. (6)) the velocity field onto a regular lattice. In practice,
re-interpolating the solution every ’ 100 time steps, which corresponds
here to ’ 1/10 of the eddy turn over time L/Ov2P1/2, was found sufficient
to prevent the degradation of the flow, at the cost of a moderate amount of
extra dissipation. With this procedure, the solution remained well behaved
for as long as we have been able to check.

Again, the main observation is that the energy flux term O(vij · rij) v2
ijP

spontaneously becomes negative. A typical recording of this quantity as
a function of time is shown in Fig. 2, as well as the corresponding record of
Ov2

i P. The system goes through large fluctuations of integral quantities, yet,
the energy transfer remains always negative. The system thus sponta-
neously breaks the time invariance symmetry, a non trivial result. Similarly,
we observe that the skewness of the longitudinal velocity difference S3(x)=
ODu(x)3P/ODu(x)2P3/2 is observed to decay towards a negative value for
x M h.

The spectrum of the solution remains close to the k−5/3 Kolmogorov
spectrum at large scales, see Fig. 3. Although this is an encouraging sign,
more work remains to be done to show that the solution of the model
correctly reproduces the large scale features of a true turbulent flow. To
proceed, one needs to understand, among other things, the relation between
the energy flux observed in the model and the large scale properties of the
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Fig. 2. The mean value of the averaged kinetic energy per particle Ov2P (a), and of the dis-
sipation rate O(vij · rij) v2

ijP (b), as a function of time. The eddy damping term is observed to be
definite positive, thus leading to a genuine energy dissipation. The parameters of the simula-
tions are nt=1, c=9. In this simulation, the effective eddy damping is responsible for half of
the total energy dissipation. The rest of the dissipation comes from the discrete remeshing of
the solution, every 80 time steps.

flow. (16) In practice one also needs to assess the convergence of the methods,
and the corresponding computational effort.

Finally, it is interesting to discuss the properties of the gas of lagran-
gian particles considered in this article in relation with other systems,
described by dissipative, time-reversible evolution equations.

In the context of LES, the ‘‘non-linear’’ and the ‘‘similarity’’ models of
energy transfer lead to quadradic dissipation terms, and to equations that

Fig. 3. An example of the energy spectrum of the solution.
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are time-reversal invariant. Interestingly, it is observed, see ref. 3 and ref-
erences therein, that these quadratic terms are not enough to properly dis-
sipate energy, and that a term that explicitely breaks the time symmetry
must be added to correctly dissipate energy. This is in a way similar to
the situation we have discussed here, since the smoothing acts irreversibly
on the system. We emphasize however that in our case, the spontaneous
symmetry breaking occurs even in the absence of explicit symmetry breaking.

From a theoretical point of view, important results have been obtained
concerning fluctuations in dissipative time-reversible systems. (17) These
ideas might possibly apply to hydrodynamic turbulence, (18) as they have
been demonstrated to apply to other physical systems. (19) Analyzing the
properties of our gas of particles from this point of view should lead to new
insight.
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